Modelling brain representations of abstract concepts

Daniel Kaiser\(^1\)*, Arthur M. Jacobs\(^2,3\), Radoslaw M. Cichy\(^2,4,5\)

\(^1\)Department of Psychology, University of York
\(^2\)Department of Education and Psychology, Freie Universität Berlin
\(^3\)Center for Cognitive Neuroscience Berlin, Freie Universität Berlin
\(^4\)Berlin School of Mind and Brain, Humboldt-Universität zu Berlin
\(^5\)Bernstein Center for Computational Neuroscience Berlin

*Correspondence:

danielkaiser.net@gmail.com
Abstract

Abstract conceptual representations are critical for human cognition. Despite their importance, key properties of these representations remain poorly understood. Here, we used computational models of distributional semantics to predict multivariate fMRI activity patterns during the activation and contextualization of abstract concepts. We devised a task in which participants had to embed abstract nouns into a story that they developed around a given background context. We found that representations in inferior parietal cortex were predicted by concept similarities emerging in models of distributional semantics. By constructing different model families, we reveal the models’ learning trajectories and delineate how abstract and concrete training materials contribute to the formation of brain-like representations. These results inform theories about the format and emergence of abstract conceptual representations in the human brain.
Introduction

The use of conceptual knowledge is one of the foundations of human intelligence. On the neural level, concepts are represented in a complex network of brain regions (Binder et al., 2009). Fueled by novel computational models of distributional semantics, researchers have recently started to unravel the format of concept representations in this neural network. By harnessing linguistic co-occurrence statistics, these models not only capture representations of concepts from written and spoken language (Deniz et al., 2019; Huth et al., 2016; Just et al., 2010; Mitchell et al., 2008), but also predict representations of novel concepts (Pereira et al., 2019).

However, these recent advances in understanding the representations of conceptual knowledge largely hinge on the study of concrete concepts. Only few studies have investigated how abstract concept representations are organized (Anderson et al., 2014; Vargas & Just, 2020; Wang et al., 2018). To date, key questions about the emergence and the format of these representations remain heavily debated (Borghi et al., 2017).

Here, we model brain representations that support the activation and contextualization of abstract concepts. We recorded fMRI while participants were tasked with embedding abstract words into a background context. By relating brain activations during this task to targeted models of distributional semantics, we shine a new light on the format of abstract concept representations in the human brain.
Results and Discussion

In an fMRI experiment, we visually presented 61 abstract German nouns (see Materials and Methods). Participants (n=19) read these words and silently embedded them into a coherent story that they were developing around a prespecified contextual background (Figure 1a).

Cortical responses were modelled in a representational similarity searchlight analysis (Figure 1b), in which we extracted similarity relations among the words across the whole cortex (see Materials and Methods). We modelled these similarities using a word2vec model of distributional semantics (Mikolov et al., 2013), trained on a 45-million sentence corpus (SdeWaC; Faaß & Eckhart, 2013).

This model predicted brain activations in the left inferior parietal cortex (IPC; Figure 1c), most prominently covering the angular gyrus, but extending into the superior parietal and middle occipital cortices (158 voxels, peak: -36/-58/46, t[18]=6.16), and in right IPC, with an anterior cluster primarily in the supramarginal gyrus (91 voxels, peak: 45/-46/58, t[18]=4.91), and a posterior cluster in the angular gyrus (35 voxels, peak: 36/-73/40, t[18]=4.80). These results show that bilateral IPC represents semantic similarities of abstract concepts. They further suggest IPC as a cortical hub for the activation and contextualization of abstract concepts.
Figure 1. Representation of abstract concepts in parietal cortex.

a) Participants completed 10 runs of fMRI recordings. Before each run, they established a unique background context in their mind and were then asked to silently narrate a story of their own making that included the subsequently presented 61 abstract words, in random order (all German word stimuli in Supplementary Information).

b) In a searchlight analysis, representational dissimilarity matrices (RDMs) were extracted (i) from the brain data, by pairwise correlations among localized activity patterns, and (ii) from a word2vec model of distributional semantics, by pairwise correlations among hidden-layer activations.

c) Correlating the neural and model RDMs revealed clusters in bilateral inferior parietal cortex (IPC), primarily covering the angular gyrus. Brain maps are thresholded at p_{voxel}<0.001 (uncorrected) and p_{cluster}<0.05 (FWE-corrected).

d) These clusters persisted when repeating the analyses while partialing out the effects of emotional word content (using affect grids), visual wordform (using a visual-categorization DNN), and auditory properties of the spoken words (using a speech-recognition DNN).

e) Within the IPC cluster defined on the full 45-million sentence model (marked by an arrow), we compared model families trained on different corpus sizes and on only abstract or concrete words, respectively. Brain-like representations emerged in models that were trained on as little as 100,000 sentences and on either abstract or concrete embeddings. Dots show individual-participant data, error bars denote SEM, asterisks represent p<0.05 (FDR-corrected).

Controlling for emotional and sensory word properties

Some researchers have argued that abstract concepts are represented through their grounding in the emotional domain (Kousta et al., 2011; Vigliocco et al., 2011). To test whether IPC representations are indeed driven by the words’ emotional content, we re-performed the analysis while partialing out valence and arousal ratings (see Materials and Methods). We still found clusters in left (36 voxels, peak: -33/-64/31, t[18]=4.73), and right (108 voxels, peak: 63/-40/31, t[18]=7.30) IPC, suggesting that the emotional content is insufficient to explain abstract concept representation in parietal cortex.
IPC is also sensitive to sensory properties, such as visual form (Freud et al., 2018) and phonological speech attributes (Hartwigsen et al., 2010). However, when repeating the analysis while partialing out early activations in a visual-categorization deep neural network (DNN; see Materials and Methods), we still found clusters in the left (157 voxels, peak: -36/-58/46, t[18]=6.07) and right (anterior: 76 voxels, peak: 51/-49/52, t[18]=4.70; posterior: 32 voxels, peak: 39/-76/40, t[18]=4.82) IPC. Similarly, when controlling for activations obtained from a speech-recognition DNN (see Materials and Methods), we still found clusters in left (113 voxels, peak: -33/-64/31, t[18]=5.43, p<0.001), and right (53 voxels, peak: 48/-46/55, t[18]=4.68) IPC. These results show that sensory properties are unrelated to IPC representations of abstract concepts.

Trajectories towards brain-like representations

Our observation that the word2vec model and IPC share abstract concept representations led us to ask how the model acquires this property. To test whether co-occurrence statistics are acquired incrementally over increasing experience with human language, we devised a word2vec model family whose members were trained on staggered amounts of data, from the full 45-million sentence corpus down to fragments as small as 1,000 sentences. We then evaluated how well models trained on less data could still predict representations in the IPC cluster that yielded the best correspondence with the full 45-million sentence model (see Materials and Methods).

This analysis revealed decreasing correspondence with decreasing training data (mean r=0.74, t[18]=5.89, p<0.001). Nonetheless, a model trained on only 100,000 sentences (~0.2% of the corpus) still predicted IPC representations well (t[18]=3.46, pFDR=0.002; comparison to full model: t[18]=2.15, p=0.045), whereas models trained on smaller training sets did not (Figure 1d). These results show that brain-like representations are learned through linguistic co-occurrence statistics, which can emerge already from a (relatively) modest degree of training experience.

Extracting meaning from abstract and concrete embeddings
Some theorists argue that the meaning of abstract concepts needs to be derived through the activation of related concrete concepts, which are in turn grounded in sensory experiences (Kiefer & Pulvermüller, 2012; Lakoff, 2008). This view prompts the hypothesis that representations of abstract concepts originate primarily from co-occurrence statistics between abstract and concrete words, rather than among abstract words alone. To test this hypothesis, we trained word2vec models on subsets of the 45-million sentence corpus that we devised to consist of abstract or concrete words only (see Materials and Methods).

Models trained on abstract-only and concrete-only corpora both predicted representations in IPC (Figure 1e). Reproducing the previous pattern of results, we found that models trained on larger fractions of the corpus predicted representations better (abstract only: mean $r=0.36$, $t[18]=2.55$, $p=0.010$; concrete-only: mean $r=0.73$, $t[18]=4.32$, $p<0.001$). Interestingly, representations were modelled equally well by the most extensively trained abstract-only ($t[18]=3.09$, $p_{FDR}=0.010$) and concrete-only models ($t[18]=2.60$, $p_{FDR}=0.018$; comparison: $t[18]=0.50$, $p=0.62$), suggesting that brain-like representations of abstract concepts can emerge from either abstract or concrete semantic embeddings.

Conclusions

Our findings yield multiple key insights into abstract concept representation:

First, our findings provide novel evidence for IPC as a core area for concept coding (Binder et al., 2009). Using a task that required participants to activate and contextualize abstract concepts, we identify the angular gyrus as a critical hub for the dynamic use of abstract knowledge, consistent with the view that this region plays a key role in combinatory linguistic processing (Graessner et al., 2021; Price et al., 2015; Pylkkänen, 2019). Such combinatory processing is critical in real-life situations that require applying abstract knowledge in a situational and meaningful way.

Second, our study informs theories of abstract knowledge representation (Borghi et al., 2017). We show that the meaning of abstract concepts can be derived from
distributional word embeddings in natural language (Wang et al., 2018). Interestingly, the organization of abstract concepts, as found in our brains, can be derived from linguistic embeddings in both abstract and concrete realms of knowledge. This result shows that despite their representational dissimilarities (Binder et al., 2005; Wang et al., 2010), abstract and concrete concepts may derive their meaning through shared principles. By contrast, our data do not provide evidence for theories suggesting that abstract concepts are coded solely through emotional associations (Vigliocco et al., 2011) or the activation of related concrete concepts (Harpaintner et al., 2020; Lakoff, 2008). They rather suggest that abstract knowledge is represented through concept relationships in the language processing system.

Third, our results establish that computational models of distributional semantics acquire brain-like abstract concept representations by harnessing co-occurrence statistics from linguistic experience. Although massive corpora are immensely popular for modelling language organization, our analyses of model learning trajectories show that brain-like representations can emerge from much smaller training sets of only 100,000 sentences. Future work could map out the emergence of more fine-grained information along these model learning trajectories to predict human concept learning and development (Vigliocco et al., 2018).

Finally, our study highlights that computational models – through systematic manipulation of model training regimes – can yield targeted insights into the emergence and format of concept representations. Moving ahead, future studies could not only refine training regimes but also comprehensively manipulate fundamental model parameters such as architecture, learning material and learning procedure (Cichy & Kaiser, 2019). Such model-based analyses may yield further fine-grained insights into how our brain represents abstract knowledge.
Materials and Methods

Participants

Nineteen healthy adults (mean age 28.8 years, SD=6.1; 10 female) with normal or corrected-to-normal vision completed the experiment. All of them were right-handed and native German speakers. Participants provided informed consent and received monetary reimbursement or course credits for participation. Participants were recruited from the online participant database of the Berlin School of Mind and Brain (Greiner, 2015). All procedures were approved by the local ethical committee and were in accordance with the Declaration of Helsinki.

Stimuli and Paradigm

The stimulus set consisted of 61 abstract German nouns. All words and their English translations can be found in the Supplementary Information (Table S1).

During the fMRI experiment, participants completed 10 runs. Before each run, participants read through one of 10 contextual background stories. All texts and their English translations can be found in the Supplementary Information (Table S2). Participants were asked to mentally image themselves being in the scenario outlined in the text. After reading through the text, participants were instructed to use the subsequently presented words in the upcoming run to mentally narrate a story that incorporates the words as they are shown on the screen. They were instructed that it is completely up to them how the story unfolds as long as they use all the words in their story. Stories were chosen to be emotionally engaging to increase participants' immersion into the task. The order of the 10 stories was randomized for every participant.

Each run contained 61 experimental trials. On each trial, one of the abstract words was shown for 3 seconds, in black Arial font on a gray background. Trials were separated by an inter-trial interval of 1.5 seconds, during which a fixation cross was shown. In addition to the experimental trials, each run included 14 fixation trials, where
only the fixation cross was shown throughout the trial. Trial order was randomized within each run.

To ensure that participants paid attention to the words, we introduced a simple manual task: In each run, 7 of the word were shown in pink color and participants had to press a button whenever they saw one them.

Runs started and ended with brief fixation periods; each run lasted 5:48 minutes. The stimulation was back-projected onto a translucent screen at the end of the MRI scanner bore and controlled using the Psychtoolbox (Brainard, 1997).

Additionally, prior to the experiment, each participant completed a practice run (using a background text different from the ones used in the experiment).

Two participants completed a version of the experiment that differed in two aspects: the inter-trial interval was 1s instead of 1.5s and no behavioral task was included.

MRI acquisition and preprocessing

MRI data was acquired using a 3T Siemens Tim Trio Scanner equipped with a 12-channel head coil. T2*-weighted gradient-echo echo-planar images were collected as functional volumes (TR=2s, TE=30ms, 70° flip angle, 3mm³ voxel size, 37 slices, 20% gap, 192mm FOV, 64×64 matrix size, interleaved acquisition). Additionally, a T1-weighted image (MPRAGE; 1mm³ voxel size) was obtained as a high-resolution anatomical reference. Preprocessing was done in MATLAB using SPM12 (www.fil.ion.ucl.ac.uk/spm/). The functional volumes were realigned and coregistered to the T1 image. The T1 image was normalized to MNI-305 standard space to obtain transformation parameters used to normalize participant-specific results maps (see below).

Representational similarity analysis
To quantify neural representations, we used multivariate representational similarity analysis (RSA) (Kriegeskorte et al., 2008). In RSA, neural representations are first characterized by means of their pairwise similarity structure (i.e., how similarly each stimulus is represented with each other stimulus). The pairwise dissimilarities between neural representations are organized in neural representational dissimilarity matrices (RDMs) indexed in rows and columns by the experimental conditions compared. Then, the neural similarity structure (i.e., the neural RDMs) are correlated to model RDMs, which capture different aspects of the conditions’ similarity. Significant correlations between the neural RDMs and these model RDMs indicate that the aspect of similarity conveyed by the model is represented in the brain.

Extracting neural dissimilarity

Separately for each participant and each run, we first modeled the functional MRI data in a general linear model (GLM) with 67 predictors (61 predictors for the 61 words, and 6 predictors for the 6 movement regressors obtained during realignment). From these GLMs, we obtained 610 beta weights of interest for every voxel, which quantified the voxel’s activation to each of the 61 words in each of the 10 runs. All further analyses were carried out using a searchlight approach (Kriegeskorte et al., 2006), that is, analyses were done repeatedly for a spherical neighborhood (3-voxel radius) centered on each voxel across the brain. This approach allowed us to quantify and model neural representations in a continuous and unconstrained way across brain space.

For each searchlight neighborhood, neural RDMs were created based on the similarity of multi-voxel response patterns, using the CoSMoMVPA toolbox (Oosterhof et al., 2016). Within each neighborhood, we extracted the response pattern across voxels evoked by each word in each run. We then performed a cross-validated correlation analysis (Haxby et al., 2001). For this analysis, the data were repeatedly split into two halves (all possible 50/50 splits; results were later averaged across these splits) and the response patterns for each word were averaged within each half. For each pair of words, we then computed two correlations: (i) within-condition correlations were computed by correlating the response patterns evoked by each of the two words in
one half of the data with the response patterns evoked by the same word in the other
half of the data, and (ii) between-condition correlations were computed by correlating
the response patterns evoked by each of the two words in one half of the data with
the response patterns evoked by the other word in the other half of the data. By
subtracting the between-correlations from the within-correlations for each pair of
words, we obtained an index of how dissimilar two words are based on the response
patterns they evoked in the current searchlight neighborhood. Repeating this analysis
for each pair of words yielded a 61 × 61 neural RDM for each searchlight.

Modelling neural dissimilarity

To model the semantic representation of the abstract words, we used a word2vec
computational model of distributional semantics (Mikolov et al., 2013). The model was
trained on the SdeWaC corpus, which contains 45 million German sentences (Faaß &
Eckhart, 2013) using the gensim library (https://github.com/RaRe-
Technologies/gensim). The model hyperparameters were the following: dimensions =
300, model type = skipgram, window size = 5, minimum count = 1, iterations = 50. For
each word in the corpus, this model yields a vector representation that indicates its
position in a 300-dimensional vector space. Distances in this vector space reflect
similarities in contextual embeddings. We then created a 61 × 61 RDM based on the
pairwise correlations of the 300 vector-space features for each of the words used in
the experiment.

To establish correspondences between the model and the brain data, the model
RDMs were correlated with the neural RDMs for each searchlight. These correlations
were then Fisher-transformed and mapped back to the searchlight center. We thereby
obtained brain maps of correspondence between each model and the neural data.
For each participant, these maps were warped into standard space by using the
normalization parameters obtained during preprocessing.

Controlling for emotional, visual, and auditory word properties
As an emotional content model, we used participants’ responses in an affect grid task, where 20 participants (partly including the participants in the current experiment) concurrently rated each word’s valence and arousal by selecting one compartment of a 9×9 grid (Russell et al., 1989). From these data, we created two RDMs: (i) a valence RDM, whose entries reflected pairwise absolute difference in the words’ valence ratings and (ii) an arousal RDM, whose entries reflected pairwise absolute difference in the words’ arousal ratings. The valence and arousal RDMs were mildly correlated with each other (r=0.19) and with the different word2vec model RDMs (all r<0.24). The words’ similarity in valence an arousal did not significantly predict brain activations in a searchlight analysis.

As a visual word form model, we used activations in the three earliest convolutional layers an AlexNet DNN pre-trained on object recognition (Krizhevsky et al., 2012; Vedaldi & Lenc, 2015), which have been shown to capture representations of simple visual attributes in visual cortex (Cichy et al., 2016). We printed the 61 words as they appeared in the experiment on a 225×225 pixel gray image background and fed the resulting images to the background. The resulting network activations were used to construct model RDMs. For each of the first three convolutional layers of the network, the RDM was constructed by computing pairwise distances (1-correlation) between layer-specific activation vectors. The visual DNN RDMs were only very weakly correlated with the word2vec model RDMs (all r<0.1). Searchlight analyses revealed that the first three layers of the visual DNN predicted activations in bilateral posterior visual cortex, including fusiform cortex (see Supplementary Information, Figure S1).

As a model of auditory, phonetic word similarity, we used activations in a DNN model of auditory speech recognition (Kell et al., 2018). We obtained spoken versions of the 61 words from the ttsmp3 webpage (https://ttsmp3.com/text-to-speech/German/). The sound files were resized to a length of 2 seconds by right-padding them with zeros, transformed into a cochleagram representation, and then passed through the speech recognition branch of the DNN. The resulting network activations were used to construct model RDMs. For each of the seven layers of the network, the RDM was constructed by computing pairwise distances (1-correlation) between layer-specific activation vectors. The auditory DNN RDMs were only weakly correlated with the
word2vec model RDMs (all r<0.16). Searchlight analyses revealed that the early layers of the auditory DNN, because of the correlation between word length and speech duration, also predicted activations in bilateral posterior visual cortex. By contrast, the last layer of the network specifically predicted activations in left middle temporal gyrus (see Supplementary Information, Figure S1).

To control for emotional and sensory properties, we performed searchlight analyses relating the neural RDMs and the word2vec model RDMs as before, while we partialed out the two emotion predictor RDMs, the three visual DNN predictor RDMs, or the seven auditory DNN predictor RDMs, respectively. All other aspects of the analyses remained identical.

Region of interest analyses

For further dissecting the representations in left parietal cortex, we specifically focused on this area in a region-of-interest (ROI) analysis. The IPC clusters that showed significant correspondence with the word2vec model in the main analysis were chosen as the ROI. Neural RDMs were generated from pairwise correlations of activity patterns across all voxels in the ROI; the procedure was otherwise identical to the procedure applied in the searchlight analysis (see above).

As ROI definition was done on the basis of the model that was trained on the full 45-million sentences SDeWaC corpus, we never evaluated this model statistically in our ROI analysis. We instead probed the correspondence between neural RDMs in the ROI and RDMs built from a set of different word2vec model families whose training regimes differed in important aspects.

To probe the behavior of our word2vec model with changes in training set, we created a model family whose members were trained on different amounts of data. Models were trained on different fragments of the corpus (containing 45m, 10m, 1m, 100k, 10k, or 1k sentences). Each of these fragments corresponded to the first n sentences in the corpus (e.g., the 1k model comprised the first 1,000 sentences). We thereby
ensured that the smaller fragments were always completely included in the larger ones.

Additionally, we constructed a model family whose members were trained on abstract words and a model family whose members were trained on concrete words. Members in each family differed by the amount of data they were trained on (as outlined above). Abstract and concrete words were defined on the basis of the abstractness-concreteness scale of the IMS norms (https://www.ims.uni-stuttgart.de/en/research/resources/experiment-data/affective-norms) (Köper & im Walde, 2017). For the abstract-only models, we chose words that had a z-value of <0 on this scale and removed all other words from the corpus; this left us with ~65 million words (~4% of the corpus). For the concrete-only models, we chose words that had a z-value of >0 and removed all other words from the corpus; this left us with ~280 million words (~18% of the corpus). Note that for the concrete-only model, the 61 abstract words were also left in the corpus, so that relationships between them and the concrete words could be obtained. For all models of each model family, we extracted a 61×61 RDM, which was then correlated with the neural RDM extracted for the ROI; these correlations were Fisher-transformed before statistical analysis.

Statistical testing

For the searchlight analyses, to detect spatial clusters in which the neural data were explained by the different representational models, we performed one-sided t-tests against zero across participants, separately for each voxel in the correlation maps. The resulting statistical maps were thresholded at the voxel level at p_{voxel}<0.001 (uncorrected) and at the cluster level at p_{cluster}<0.05 (family-wise error corrected, as implemented in SPM12).

For the cross-validated ROI analyses, ROIs were repeatedly defined in 18 participants, using the same statistical thresholding as in the full searchlight analysis (p_{voxel}<0.001, p_{cluster}<0.05 FWE-corrected). Correlations between neural RDMs extracted from the ROIs and model RDMs were then evaluated using one-sided t-
tests against zero across participants. Results were corrected for multiple comparisons across the different training corpus sizes using FDR corrections.

Data availability

Data are publicly available on OSF (https://doi.org/10.17605/OSF.IO/FTBJQ). For other materials, please contact the corresponding author.

Acknowledgements

Thanks to Raphael Leuner and Kshitij Dwivedi for help with the computational analyses. D.K. and R.M.C. are supported by DFG grants (KA4683/2-1, CI241/1-1, CI241/3-1, CI241/7-1). R.M.C. is supported by an ERC Starting Grant (ERC-2018-StG 803370).

References

Freud E, Culham JC, Plaut DC, Behrmann M. (2018). The large-scale organization of shape processing in the ventral and dorsal pathways. eLife, 6, e27576.

